

Are GM crops fit for purpose? If not, then what?

Feeding the World Conference 2008 is supported by the following organisations.

EXAMPLES OF SUCCESSFUL AGROECOLOGY

Agro-Ecological Solutions and the Case of Drought Resistance

Dr Julia Wright Head of Programmes

jwright@gardenorganic.org.uk

INDUSTRIAL VERSUS ECOLOGICAL PARADIGMS

Industrial

- •Focus on individual farm components
- Intensive use of external inputs
- Monocultures
- Simple uniformity
- •Yield maximisation over the short term

Ecological

- Focus on whole farm system
- Knowledge intensive, on-farm synergies
- Polycultures, agrobiodiversity
- •Location-specific complexity
- •Yield optimisation over the long term

GM VERSUS ECOLOGICAL 'SOLUTIONS'

GM Solutions	Ecological Solutions
Herbicide resistance	Ground cover, mulches, soil fertility management, rotations, mechanical weeding, varietal choice (vigour/habit), transplants, stale seed beds, canopy cover, 'weed' crops as food/predator attractants
Pest and disease resistance	Variety/crop/farm diversity, buffer zones, predator attractants/ antagonists, biological controls, rotations, mechanical covers (fleece/mesh), forecasting/ monitoring - timing, mixed cropping, varietal selection/breeding, grafting, module planting
Improved nutrition	Biodiversity, varietal selection/breeding, soil nutrient management, efficient irrigation (higher dry matter)

ECOLOGICAL EXAMPLES: VITAMIN A DEFICIENCY

'Golden Rice' fortified with beta-carotene

•Increased intake of betacarotene (RDA 144g rice)

Beta-carotene rich 'weeds' in traditional rice fields

•Increased intake of beta-carotene (RDA 100g green leaves)

•Free

 Increased nutritional & biological diversity

ECOLOGICAL EXAMPLES: CONTROL OF MAIZE PESTS AND WEEDS

Herbicide resistant maize and Bt maize

- •Controls maize stem borer
- Controls certain weeds

Controls Striga weed
Controls maize stem borer
Improves soil fertility
Improves water retention
Produces livestock fodder
Encourages maize diversity

TACKLING 'PROBLEMS' THE ECOLOGICAL WAY: THE CASE OF DROUGHT RESISTANCE

The Challenge in Cuba

Climate Change + Intensive + Lack of = Successive Harvest Agriculture Finances/Fuel Failures

Temp rise 0.5° Drought 2002-06 60% soils eroded 40% low water retention 45% low fertility For irrigation systems

In Holguin Province, 1 year:

- •3,000 wells dried up
- •2,000 livestock deaths
- •400,000 litres milk lost
- Maize not sown

The 'Solution' Participatory Development of Rainwater Harvesting and Conservation Strategies

INSTITUTO NACIONAL DE CIENCIAS AGRÍCOLAS San José de las Lajas, La Habana, Cuba

Year 1: 1 Province, 2 communities, £15,000

Actions:

- Increase farmer knowledge on water cycles, salinisation and water management
- Experiments with drought-tolerant varieties, rainwater capture, soil improvement and cover crops

Year 1

Results:

- Increased farmer capacity to experiment and work together
- Increased crop diversity
- Livestock corralled for manure collection
- Uptake of wormeries and biofertilisers
- Improved soil-water retention capacity
- New local vegetable market
- New local seed market
- Increased family income and nutritional availability

Year 1

"A year ago, drought was a worry to us, but now we don't list this as so important"

Farmer, Las Caobas, Holguin

Year 2: Increasing Ecological Literacy

"Greening the desert?"

Geoff Lawton, Permaculture Research Institute, Australia

Year 2: Drought-Proofing Farms 4 provinces, 20 communities, £20,000

WHICH WOULD YOU CHOOSE?

Drought-tolerant maize (Budget \$47 million)

• Increase in maize yields/decrease in water requirements

Drought-proofed farms

- Increase in total farm yields
- Drought no longer a problem
- Soil fertility/biodiversity improved
- Water available for household/ livestock

More resources available at the website www.feedingtheworldconference.org

Are GM crops fit for purpose? If not, then what?

Feeding the World Conference 2008 is supported by the following organisations.

